Avfonomy and software

Richard Doyle

y / t Propulsion Lab
fechnology on NASA’s ol

Deep Space One

Douglas Bernard, Richard Doyle, Ed Riedel, Nicolus Rouquette,
and Jay Wyatt, Jet Propulsion Laboratory C
Mike Lowry and Pandurang Nayak, NASA Ames Research Center

—

NASA’s Deep Space One

g, 7 TR
mission is unprecedented. ,,
Traditionally, NASA’s space 5 , 8

missions have been justified
|
4 \ |
O ol

10 1EEE INTELLIGENT SYSTEMS

by science data return as the primary, if not
the sole consideration. DS1 is the first NASA
mission whose main purpose is to demon-
strate the flight readiness of a set of technolo-
gies. This first installment of the new “Al in
Space” column will show how these Al-
related technologies are helping to launch
NASA into the exciting new era of autono-
mous space vehicles.

Deep Space One

DS1 is the vanguard of NASA’s New Mil-
lennium Program, which was conceived to
directly address the ongoing challenge of
flight-qualifying technologies for mission use
and to short-circuit the Catch-22 situation
where flight project managers naturally prefer
to utilize technologies only after they’ve been
flown on another mission. Any of the DS1-
qualified technologies might hold the key for
enabling future NASA space-exploration mis-
sions. DS1 carries a dozen technology experi-
ments, each demonstrating new capabilities
that cover the gamut of spacecraft functions
—from propulsion and sensing to power and
communications. Three of these technology
experiments demonstrate new capabilities in
spacecraft autonomy and autonomous mission
operations:

* The autonomy-related experiment with the
largest scope on DS1 is a joint NASA
Ames Research Center/Jet Propulsion Lab-
oratory project called the Remote Agent.




gence, Robotics and Automation for Space,
ands, in June 1999. He gave the invited talk en
f Spacecraft Autonomy” at the National Confer
Higence in Providence, Rhode Island, in July 1
ichard.j.doyle@jpl.nasa.gov. :

RA is both an autonomy architecture and a | RA approach, the operational rules and con-
set of component reasoning engines for straints are encoded in the flight software.
mission planning, execution, and fault The spacecraft operators therefore can con-
protection. sider the software as an autonomous remote
¢ One of the fundamental space-mission agent in that they rely on the agent to achieve
functions is navigation. DS1 is the first particular goals. The operators do not know
interplanetary mission to be navigated by | the exact conditions on the spacecraft, so
an autonomous navigation system. All they do not tell the agent exactly what to do
previous missions have been navigated by | at each instant of time. They do, however, tell
ground operators. The DS1 navigation the agent exactly which goals to achieve in a
technology demonstration (AutoNav) period of time as well as how and when to
enables a spacecraft to navigate indepen- | report back. The DS1 mission will use this
dently of ground teams and ground links. RA approach as an experiment. . The RA is formed by the integration of three
¢ As spacecraft begin to become more au- The DS-1 RA experiment has several goals: separate Al technologies: an onboard planner-
tonomous, mission operations concepts scheduler, a robust multithreaded executive,
must also evolve. DS1’s Beacon Opera- ¢ provide an onboard demonstration of and a model-based fault-diagnosis and recov-
tions experiment demonstrates a new end- spacecraft autonomy, including goal- ery system (see Figure 1). All three are written
to-end concept for mission operations, oriented commanding, time- and event- in Harlequin Lisp specifically ported to run
where the spacecraft takes responsibility driven execution, and model-based fault under VxWorks on a RAD6000 processor.
for determining when ground support is diagnosis and recovery; and Each technology uses two distinct compo-
needed. ¢ familiarize the spacecraft-engineering nents: a general-purpose reasoning engine
community with the RA approach and and application-specific models. The RA oper-
Also, experience has shown that software- decrease the risk (both real and per- ates at severa] different levels of autonomy,
engineering issues emerge as autonomy ceived) in deploying RAs on future ranging from traditional spacecraft command-
capabilities are developed: one of the most missions. ing through onboard planning and execution.

daunting of these is testing. Encouragingly, a
technique based in formal methods yielded
important results on DS1 when an error was
detected early in the development of an RA
component.

' Another s_oftwa:e—engineeling technique Mission Smart
yielded crucial results on DS1 when our space \  manager executive
technologists used automatic code generation Co ‘
to generate much of the core fault-protection
flight code. Although not an official technol-
ogy experiment, this success nonetheless
enabled DS1 to meet its intense development
schedule and launch in October 1998.

Planner/
scheduter

The Remote Agent  Planning experts
The Remote Agent experiment is a flight (including navigation)

experiment that demonstrates a new approach

to spacecraft command and control. In the Figure 1. Remote Agent architecture.

MAY/JUNE 1999 n



Figure 2. Comparing conventional and autonomous space

The RA preflight and flight validation
proceeded as follows:

* First, its designers used the RA to handle
low-level commands as instructed by the
ground.

* Next, they demonstrated its ability to
execute a flexible plan generated on the
ground.

~* Finally, they let the RA generate plans
onboard and execute them without prior
inspection of those plans by humans.

During the experiment, system designers
injected several fictitious failures, letting the
RA demonstrate its model-based fault-pro-
tection approach. With ground and flight
testing now complete, all RA validation
objectives have been met, and the team is
applying the lessons learned during the
experiment to future technology upgrades.

The RA team is led by JPL’s Doug Ber-
nard and ARC’s Pandu Nayak.

The AutoNav system

By using images from an onboard camera of
sufficient quality, the Autonomous Optical
Navigation (AutoNav) system can control a
spacecraft’s flight path, including use of solar
electric propulsion (SEP), and target one or
more flyby encounters, or rendezvous (see
Figure 2). Because the system was designed to
be largely self-contained, it can be inserted into
a fairly simple software architecture, without
other autonomous systems required, except for
attitude control. This is the situation for DS1.
Even in the simple “traditional” environment
of the borrowed Mars Pathfinder software set,
AutoNav has achieved highly autonomous

craft novigation.

behavior. This system’s advantages and suc-
cessful utilization so far have encouraged sev-
eral missions to baseline its use in whole or
part. These missions include the Space Tech-
nology-4 mission to rendezvous with and land
on 4 comet, Stardust, which will use the close-
approach system, and Deep-Impact, a Comet
penetrator mission, which will use AutoNav’s
encounter and targeting components.

AutoNav consists of several subsystems
and functions:

s Navigation executive function. The Nav-
Exec controls all AutoNav operations that
cause physical action by the spacecraft.
By communicating with the altitude con-
trol system (ACS), NavExec turns the
spacecraft and images a series of target
navigational beacons, which with DS1 are
usually nearby asteroids. This complex of
activities include planning the sequence of
turns to optimize time utilization and in-
sure completion of the photo-taking se-
quence on schedule. NavExec also per-
forms similar duties during the long
segments of SEP activity, during which
NavExec commands the spacecraft to go
to the required attitude, light the engine,
and maintain thrust at periodically up-
dated attitudes and magnitudes. Similarly,
NavExec commands the execution of tra-
jectory-correction maneuvers.

* Image processing. As its name implies,
this function identifies the objects and
stars in images relayed to AutoNav and
does highly precise data reductions. Ulti-
mately, we anticipate 0.1-pixel accuracy
from the algorithms (although current
scattered-light and other problems with an

onboard instrument have prevented this so
far). Special-encounter image processing
will amplify the dim signal of the target as
seen many hours before closest approach.

s Orbit determination (OD). Using data
from the image processor, AutoNav uses
a batch-sequential modified Kalman filter
to compute the spacecraft’s position. It
also estimates parameters modeling SEP
thrust and random accelerations (such as
errors in solar-pressure modeling, or
spacecraft outgassing).

s Maneuver planning. With the results of
the OD in hand, AutoNav will compute
updates to the upcoming SEP thrust plan,
or the components of a statistical trajec-
tory-correction maneuver (that is, one
based on statistical variations in the OD).
These trajectory-correction maneuvers
can use either SEP or the hydrazine
propulsion system.

¢ Encounter knowledge updates. After the
final trajectory-correction maneuver fin-
ishes, AutoNav switches to a special mode
of activity, which specifically updates
onboard knowledge of the target position
and relays this information to the ACS for
spacecraft pointing changes.

AutoNav began operations as soon as the
spacecraft came to life after launch on Octo-
ber 24, 1998, providing critical ephemeris
information (data on planetary positions) to
the ACS. Over the following four months,
mission developers checked out and invoked
progressively more components of AutoNav,
until April 20, 1999, when the spacecraft
came completely under the control of the
AutoNav system, flying a SEP-powered flight
path computed onboard. This autonomous
control will continue with periodic necessary
suspensions or updates in AutoNav control
for onboard tests and validations, leading to a
fully autonomously controlled flyby of aster-
oid 1992KD on July 29, 1999.

JPL’s Ed Reidel leads the Autonomous
Navigation team.

Beacon Operations

This experiment aims to flight-validate an
operations concept and the associated tech-
nology components necessary to enable more
adaptive operations on future space missions.
This approach will

* reduce the spacecraft-resource and mis-
sion-operation costs of the spacecraft-to-
ground link,

12

IEEE INTELLIGENT SYSTEMS




¢ reduce the routine tracking burden of
large-aperture antennas, which can help
NASA'’s Deep Space Network ease the
loading on its overconstrained antenna
network, and

* reduce mission risk because the low-cost
link can be maintained more frequently
and also because a mission’s telemetry
link cannot be achieved due to spacecraft-
or mission-design constraints.

Two subsystems implement the beacon
operations functionality on DS1 (see Figure 3).
The first is an end-to-end tone system that Jets
the spacecraft inform the ground whether data
needs to be sent. This tone does not contain
any telemetry, but rather represents one of four
possible requests for ground action (no action
required, contact when convenient, contact
within a certain time, or contact immediately).

The second subsystem produces intelligent
data summaries that are downlinked as
telemetry after ground personnel respond to
the tone request. Onboard summarization
produces four types of engineering telemetry.
This subsystem gathers high-level spacecraft
information—such as the number of alarm
crossings, spacecraft mode and state histo-
ries, and other pertinent statistics—since the
last ground contact. It also gathers episode
data for the culprit and causally related sen-
sor channels whenever a sensor violates an
alarm threshold and stores the data at a high
sample rate. It collects snapshot telemetry at
a much lower sample rate for all sensor and
transform channels. Snapshot data serves
only for rough correlation and to fill in the
gaps between episodes. The last component
of the downlinked summary, performance
data, is similar to episode data but captures
maneuvers or other events known in advance
to be of interest to people on the ground. All
of the summary algorithms are implemented
in C for the VxWorks operating system.

The summary algorithms incorporate Al-
based methods to enhance anomaly-detection
and episode-identification capability. The
ELMER (Envelope Learning and Monitoring
using Error Relaxation) technology replaces
traditional redlines with time-varying alarm
thresholds to provide faster detection with
fewer false alarms. The system uses a neural
network to learn these functions; training can
be performed onboard or on the ground
(ground-based for DS1). ELMER is particu-
larly powerful because it requires very little
knowledge engineering and trains the neural
net with nominal sensor data.

" ELMER leaming algorithm -

Figure 3. Beacon Operations system.

Another Al-based method produces empir-
ical transforms that derive their heritage from
previous Al research work at JPL in selective
monitoring. Once computed onboard, these
act as pseudosensors. The current transforms
for DS1 compute high, low, and average val-
ues and first and second derivatives. Alarm
limits can be ptaced on these transforms, and
they can also serve as an input to the Elmer
neural network. Additional transforms, if
desired, can easily be defined and uplinked to
the spacecraft as the mission progresses.

JPL’s Jay Wyatt leads the Beacon Opera-
tions team.

Autonomy software testing

In space exploration, a major obstacle to
widespread application of autonomy capabil-
ities in flight software is not just technical
feasibility; it is doubt about its trustworthi-
ness as a replacement for human-in-the- loop
decision-making. ACSs raise difficult verifi-
cation and validation issues because, unlike
conventional sequencer-based open-loop
systems that perform transactions visible
through uplink-downlink communications,
they close many control loops and arbitrate
many resources onboard with specialized
reasoning in muitiple concurrent threads. The
number of possible execution paths for ACSs
is many orders of magnitude greater than for
traditional flight-control software. Verifica-
tion and validation techniques that signifi-
cantly increase confidence in these decision-
making control systems are needed. Toward
this end, researchers at NASA Ames, JPL,
and Carnegie Mellon University demon-

strated techniques for verifying the greatly
expanded number of possible execution paths
inherent in autonomy software. Techniques
were demonstrated for all parts of the Re-
mote Agent—planner, executive, and mode
identification and reconfiguration (MIR)—
with the most extensive demonstration focus-
ing on the resource manager of the goal-ori-
ented executive.

Autonomy software is inherently concur-
rent; that is, multiple processes achieving
different goals or subgoals execute in paral-
lel. Concurrent-task software is easier to
program than traditional sequences because
the means of achieving each goal can be
designed separately. Given autonomy’s
closed-loop nature, each goal being achieved
represents a separate process. However, the
extra degrees of freedom in achieving goals
through separate processes can lead to unin-
tended interactions between processes and
lead to failures. These extra degrees of free-
dom make autonomy-software verification
difficult through testing alone.

Previously, model-checking technology has
been used to debug and verify concurrent digi-
tal hardware designs and communication pro-
tocols. Most of the demonstrations focused on
using model checking to debug and verify por-
tions of the RA. Model-checking is a set of
mathematical algorithms based on automata
theory for verifying and debugging concurrent
or real-time systems modeled as interacting
finite-state machines. Given a model and a
property, a model-checker searches for traces
of the model that violate the property—a trace
is an interleaved sequence of states of the

MAY/JUNE 1999




tem designers applied model checking di-
rectly to the core software. By exploring all
possible execution states, model checking
found five concurrency bugs. The errors
found were for unusual situations that the
designers had not fully considered. For exam-
ple, model checking found a race condition
when a task program was aborted and the
locks it had on resources would not release
correctly if the daemon monitoring the locks
woke up at a particular point. For the planner
and MIR, both of which are based on deduc-
tive rather than procedural methods, model
checking was applied to validate the models.
Specifically, model checking proved that it
could find possibly unintended consequences
of a model and thus help the model developer
revise the model. Finally, NASA’s designers
found that runtime verification could be tied
into the same framework as model checking
through behavior auditors that monitor the
runtime execution of autonomy software.
Behavior auditors are specified in a language
similar to the property descriptions used by
model checkers.

ARC’s Mike Lowry led the DS1 autonomy
software testing work.

Avto-coding

Until DS1, JPL had not used code-genera-
tion techniques on a large scale for avionics
software. However, the constraints of the
mission design and development cycle and
limited budget and resources dictated a
departure from past practices. The demands
of concurrent design and development as
well as overlapping design and integration
schedules would have drained all available
resources allocated for system-level fault-
protection. The requirement that postlaunch
activities be directed by fault protection fur-
ther increased the task’s difficulty.

First, the DS1 project decided to reuse the
successful Mars Pathfinder fault-protection
(MPF) engine because it achieves a good
separation of architecture and domain con-
cerns. However, the MPF relied heavily on
software engineers to encode the domain-
specific fault-protection design into the target
C language. Despite fewer software-engi-
neering resources, DS1 faced a nonetheless
larger design scope (spinner versus three-axis

finite-state machines. Unlike simulators, ularly well-suited to exploring the relevant spacecraft) that also included postlaunch
model-checkers explore all relevant traces. In execution paths of nondeterministic systems activities that, on other spacecraft, are typi-
other words, they explore all realizable paths with multiple processes running in parallel. cally handled with sequences. To meet this
through the graph of states that can be reached | This makes them well adapted to verification challenge, DS1’s developers reorganized the
from the initial state and that match the prop- and debugging of autonomy software. fault-protection strategy to capture all de-
erty being checked. Model-checkers are partic- For the procedural executive, NASA sys- signs in terms of high-level behavioral and

[ 14 1EEE INTELLIGENT SYSTEMS




Statechart
execution

Qutput
> com‘mands

State
transition
events

Fault responses

1 Fault
Lo ©)

Fault response

Spacecraft avionics

-behavior {bold edges)

Figure 4. Behavior reconstruction in autocoding.

structural specifications instead of low-level
C code. The Harel statechart notation became
the standard means of describing the design
of every fault-protection monitor and res-
ponse. Such monitors are responsible for
extracting features from raw data to reliably
detect the occurrence of a known fault, while
fault responses define the logic that controls
the spacecraft to mitigate a fault’s effects.
DS1 represents the first spacecraft at JPL
where code generation from statecharts has
been systematically applied to achieve rigor-
ous and consistent software implementations
in the target language directly from the state-
chart diagrams. This process was supported,
in part, with the Mathwork’s Matlab State-
flow toolbox. This toolbox provides a cus-
tomizable translative code generator for
statecharts. Extensive customizations of that
toolbox were necessary—first, to address the
needs of the DS1 fault-protection runtime
architecture, and second, to fulfill the mis-
sion’s end-to-end needs from design, to soft-
ware, integration, and test, and to operations.
To support the systematic comparison of
test results obtained from any pair of plat-
forms (unit test, testbeds, and spacecraft),
system developers had to adequately imple-
ment the execution of fault responses. They
leveraged knowledge of the set of all faults
and responses to derive a minimal-length
encoding/decoding algorithm for onboard
compression (encoding) and ground decom-
pression (decoding) of state-transition events.
Instead of instrumenting each fault res-
ponse’s state-transition code, the statechart-
execution architecture signals state-transition
events to the compression algorithm. From a
sequence of such events, this algorithm com-
putes an encoded value representing the path
to the current state from the top-level state-
chart (the fault response handling the occur-

rence of a fault) through all intermediate
statecharts invoked (that is, the hierarchy of
helper subresponses invoked).

The encoded path and ancillary sampled
variables constitute an event record. These
algorithms produce the necessary and suffi-
cient set of event records to provide full
accountability of the rationale behind every
state transition for every fault-response exe-
cution within memory limitations. This tech-
nique enables a behavior-reconstruction
approach to testing—the process of produc-
ing a parsimonious explanation of a fault-
response execution by determining the se-
quence of external events that recreates the
same event record history as that obtained
from the spacecraft (see Figure 4).

The autocoding work on DS1 was led by
JPL’s Nicolas Rouquette.

t]CSC five autonomy-technology experi-
ments and related software-engineering
activities on DS1 are paving the way for the
use of autonomy capabilities in future NASA
missions: proving technologies, reducing
perceived risk, and ameliorating first-user
costs. NASA is entering the era of auton-
omous space systems, and the results
achieved on DS1 are already leading to appli-
cations of the autonomy technologies des-
cribed here as well as inspiring additional
autonomy-technology development work.

Adknowledgment

The research described here was performed at
the Jet Propulsion Lab, California Institute of
Technology, and at the Ames Research Center
under contracts with the National Aeronautics
and Space Administration. [

MAY /JUNE 1999




